/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifdef _MSC_VER #define _CRT_SECURE_NO_WARNINGS #pragma warning( disable : 6011 ) // dereferencing NULL pointer (from malloc) #endif #include "skcms.h" #include "skcms_internal.h" #include "test_only.h" #include #include #include #include #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(SKCMS_OPT_INTO_NEON_FP16) static bool kFP16 = true; #else static bool kFP16 = false; #endif #if defined(_MSC_VER) #define DEBUGBREAK __debugbreak #elif defined(__clang__) #define DEBUGBREAK __builtin_debugtrap #else #define DEBUGBREAK __builtin_trap #endif #define expect(cond) \ do { \ if (!(cond)) { \ fprintf(stderr, "expect(" #cond ") failed at %s:%d\n",__FILE__,__LINE__); \ fflush(stderr); /* stderr is buffered on Windows. */ \ DEBUGBREAK(); \ } \ } while(false) #define expect_close(x,y) \ do { \ double X = (double)(x), \ Y = (double)(y); \ if (X == (double)(int)X && \ Y == (double)(int)Y && \ (X == Y-1 || Y == X-1)) { \ /* These are ints and off by one. Sounds close to me. */ \ } else { \ double ratio = (X < Y) ? X / Y \ : (Y < X) ? Y / X \ : 1.0; \ if (ratio < (kFP16 ? 0.995 : 1.0)) { \ fprintf(stderr, "expect_close(" #x "==%g, " #y "==%g) failed at %s:%d\n", \ X,Y, __FILE__,__LINE__); \ fflush(stderr); /* stderr is buffered on Windows. */ \ DEBUGBREAK(); \ } \ } \ } while(false) static void test_ICCProfile() { // Nothing works yet. :) skcms_ICCProfile profile; const uint8_t buf[] = { 0x42 }; expect(!skcms_Parse(buf, sizeof(buf), &profile)); } static void test_FormatConversions() { // We can interpret src as 85 RGB_888 pixels or 64 RGB_8888 pixels. uint8_t src[256], dst[85*4]; for (int i = 0; i < 256; i++) { src[i] = (uint8_t)i; } // This should basically be a really complicated memcpy(). expect(skcms_Transform(src, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, NULL, dst, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, NULL, 64)); for (int i = 0; i < 256; i++) { expect(dst[i] == i); } // We can do RGBA -> BGRA swaps two ways: expect(skcms_Transform(src, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, NULL, dst, skcms_PixelFormat_BGRA_8888, skcms_AlphaFormat_Unpremul, NULL, 64)); for (int i = 0; i < 64; i++) { expect(dst[4*i+0] == 4*i+2); expect(dst[4*i+1] == 4*i+1); expect(dst[4*i+2] == 4*i+0); expect(dst[4*i+3] == 4*i+3); } expect(skcms_Transform(src, skcms_PixelFormat_BGRA_8888, skcms_AlphaFormat_Unpremul, NULL, dst, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, NULL, 64)); for (int i = 0; i < 64; i++) { expect(dst[4*i+0] == 4*i+2); expect(dst[4*i+1] == 4*i+1); expect(dst[4*i+2] == 4*i+0); expect(dst[4*i+3] == 4*i+3); } // Let's convert RGB_888 to RGBA_8888... expect(skcms_Transform(src, skcms_PixelFormat_RGB_888 , skcms_AlphaFormat_Unpremul, NULL, dst, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, NULL, 85)); for (int i = 0; i < 85; i++) { expect(dst[4*i+0] == 3*i+0); expect(dst[4*i+1] == 3*i+1); expect(dst[4*i+2] == 3*i+2); expect(dst[4*i+3] == 255); } // ... and now all the variants of R-B swaps. expect(skcms_Transform(src, skcms_PixelFormat_BGR_888 , skcms_AlphaFormat_Unpremul, NULL, dst, skcms_PixelFormat_BGRA_8888, skcms_AlphaFormat_Unpremul, NULL, 85)); for (int i = 0; i < 85; i++) { expect(dst[4*i+0] == 3*i+0); expect(dst[4*i+1] == 3*i+1); expect(dst[4*i+2] == 3*i+2); expect(dst[4*i+3] == 255); } expect(skcms_Transform(src, skcms_PixelFormat_BGR_888 , skcms_AlphaFormat_Unpremul, NULL, dst, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, NULL, 85)); for (int i = 0; i < 85; i++) { expect(dst[4*i+0] == 3*i+2); expect(dst[4*i+1] == 3*i+1); expect(dst[4*i+2] == 3*i+0); expect(dst[4*i+3] == 255); } expect(skcms_Transform(src, skcms_PixelFormat_RGB_888 , skcms_AlphaFormat_Unpremul, NULL, dst, skcms_PixelFormat_BGRA_8888, skcms_AlphaFormat_Unpremul, NULL, 85)); for (int i = 0; i < 85; i++) { expect(dst[4*i+0] == 3*i+2); expect(dst[4*i+1] == 3*i+1); expect(dst[4*i+2] == 3*i+0); expect(dst[4*i+3] == 255); } // Let's test in-place transforms. // RGBA_8888 and RGB_888 aren't the same size, so we shouldn't allow this call. expect(!skcms_Transform(src, skcms_PixelFormat_RGB_888 , skcms_AlphaFormat_Unpremul, NULL, src, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, NULL, 85)); // These two should work fine. expect(skcms_Transform(src, skcms_PixelFormat_BGRA_8888, skcms_AlphaFormat_Unpremul, NULL, src, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, NULL, 64)); for (int i = 0; i < 64; i++) { expect(src[4*i+0] == 4*i+2); expect(src[4*i+1] == 4*i+1); expect(src[4*i+2] == 4*i+0); expect(src[4*i+3] == 4*i+3); } expect(skcms_Transform(src, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, NULL, src, skcms_PixelFormat_BGRA_8888, skcms_AlphaFormat_Unpremul, NULL, 64)); for (int i = 0; i < 64; i++) { expect(src[4*i+0] == 4*i+0); expect(src[4*i+1] == 4*i+1); expect(src[4*i+2] == 4*i+2); expect(src[4*i+3] == 4*i+3); } uint32_t _8888[3] = { 0x03020100, 0x07060504, 0x0b0a0908 }; uint8_t _888[9]; expect(skcms_Transform(_8888, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, NULL, _888 , skcms_PixelFormat_RGB_888 , skcms_AlphaFormat_Unpremul, NULL, 3)); expect(_888[0] == 0 && _888[1] == 1 && _888[2] == 2); expect(_888[3] == 4 && _888[4] == 5 && _888[5] == 6); expect(_888[6] == 8 && _888[7] == 9 && _888[8] == 10); } static void test_FormatConversions_565() { // This should hit all the unique values of each lane of 565. uint16_t src[64]; for (int i = 0; i < 64; i++) { src[i] = (uint16_t)( (i/2) << 0 ) | (uint16_t)( (i/1) << 5 ) | (uint16_t)( (i/2) << 11 ); } expect(src[ 0] == 0x0000); expect(src[31] == 0x7bef); expect(src[63] == 0xffff); uint32_t dst[64]; expect(skcms_Transform(src, skcms_PixelFormat_RGB_565 , skcms_AlphaFormat_Unpremul, NULL, dst, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, NULL, 64)); // We'll just spot check these results a bit. for (int i = 0; i < 64; i++) { expect((dst[i] >> 24) == 255); // All opaque. } expect(dst[ 0] == 0xff000000); // 0 -> 0 expect(dst[20] == 0xff525152); // (10/31) ≈ (82/255) and (20/63) ≈ (81/255) expect(dst[62] == 0xfffffbff); // (31/31) == (255/255) and (62/63) ≈ (251/255) expect(dst[63] == 0xffffffff); // 1 -> 1 // Let's convert back the other way. uint16_t back[64]; expect(skcms_Transform(dst , skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, NULL, back, skcms_PixelFormat_RGB_565 , skcms_AlphaFormat_Unpremul, NULL, 64)); for (int i = 0; i < 64; i++) { expect(src[i] == back[i]); } } static void test_FormatConversions_16161616LE() { // We want to hit each 16-bit value, 4 per each of 16384 pixels. uint64_t* src = malloc(8 * 16384); for (int i = 0; i < 16384; i++) { src[i] = (uint64_t)(4*i + 0) << 0 | (uint64_t)(4*i + 1) << 16 | (uint64_t)(4*i + 2) << 32 | (uint64_t)(4*i + 3) << 48; } expect(src[ 0] == 0x0003000200010000); expect(src[ 32] == 0x0083008200810080); // just on the cusp of rounding to 0x00 or 0x01 expect(src[16383] == 0xfffffffefffdfffc); uint32_t* dst = malloc(4 * 16384); expect(skcms_Transform(src, skcms_PixelFormat_RGBA_16161616LE, skcms_AlphaFormat_Unpremul, NULL, dst, skcms_PixelFormat_RGBA_8888 , skcms_AlphaFormat_Unpremul, NULL, 16384)); // skcms_Transform() will treat src as holding little-endian 16-bit values. expect(dst[ 0] == 0x00000000); // 0x0003 rounds to 0x00, etc. expect(dst[ 32] == 0x01010100); // 0x80 -> 0.9980544747081712, 0x81 -> 1.0019455252918288 expect(dst[16383] == 0xffffffff); // 0xfffc rounds to 0xff, etc. // We've lost precision when transforming to 8-bit, so these won't quite round-trip. // Instead we should see the 8-bit dst value byte-doubled, as 65535/255 = 257 = 0x0101. uint64_t* back = malloc(8 * 16384); expect(skcms_Transform(dst , skcms_PixelFormat_RGBA_8888 ,skcms_AlphaFormat_Unpremul, NULL, back, skcms_PixelFormat_RGBA_16161616LE,skcms_AlphaFormat_Unpremul, NULL, 16384)); for (int i = 0; i < 16384; i++) { expect_close( ((back[i] >> 0) & 0xffff) , ((dst[i] >> 0) & 0xff) * 0x0101); expect_close( ((back[i] >> 16) & 0xffff) , ((dst[i] >> 8) & 0xff) * 0x0101); expect_close( ((back[i] >> 32) & 0xffff) , ((dst[i] >> 16) & 0xff) * 0x0101); expect_close( ((back[i] >> 48) & 0xffff) , ((dst[i] >> 24) & 0xff) * 0x0101); } free(src); free(dst); free(back); } static void test_FormatConversions_161616LE() { // We'll test the same cases as the _16161616LE() test, as if they were 4 RGB pixels. uint16_t src[] = { 0x0000, 0x0001, 0x0002, 0x0003, 0x0080, 0x0081, 0x0082, 0x0083, 0xfffc, 0xfffd, 0xfffe, 0xffff }; uint32_t dst[4]; expect(skcms_Transform(src, skcms_PixelFormat_RGB_161616LE, skcms_AlphaFormat_Unpremul, NULL, dst, skcms_PixelFormat_RGBA_8888 , skcms_AlphaFormat_Unpremul, NULL, 4)); expect(dst[0] == 0xff000000); expect(dst[1] == 0xff010000); expect(dst[2] == 0xffff0101); expect(dst[3] == 0xffffffff); // We've lost precision when transforming to 8-bit, so these won't quite round-trip. // Instead we should see the 8-bit dst value byte-doubled, as 65535/255 = 257 = 0x0101. uint16_t back[12]; expect(skcms_Transform(dst , skcms_PixelFormat_RGBA_8888 , skcms_AlphaFormat_Unpremul, NULL, back, skcms_PixelFormat_RGB_161616LE, skcms_AlphaFormat_Unpremul, NULL, 4)); uint16_t expected[] = { 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0101, 0x0101, 0x0101, 0xffff, 0xffff, 0xffff, 0xffff }; for (int i = 0; i < 12; i++) { expect_close(back[i], expected[i]); } } static int bswap16(int x) { return (x & 0x00ff) << 8 | (x & 0xff00) >> 8; } static void test_FormatConversions_16161616BE() { // We want to hit each 16-bit value, 4 per each of 16384 pixels. uint64_t* src = malloc(8 * 16384); for (int i = 0; i < 16384; i++) { src[i] = (uint64_t)(4*i + 0) << 0 | (uint64_t)(4*i + 1) << 16 | (uint64_t)(4*i + 2) << 32 | (uint64_t)(4*i + 3) << 48; } expect(src[ 0] == 0x0003000200010000); expect(src[ 8127] == 0x7eff7efe7efd7efc); // This should demonstrate interesting rounding. expect(src[16383] == 0xfffffffefffdfffc); uint32_t* dst = malloc(4 * 16384); expect(skcms_Transform(src, skcms_PixelFormat_RGBA_16161616BE, skcms_AlphaFormat_Unpremul, NULL, dst, skcms_PixelFormat_RGBA_8888 , skcms_AlphaFormat_Unpremul, NULL, 16384)); // skcms_Transform() will treat src as holding big-endian 16-bit values, // so the low lanes are actually the most significant byte, and the high least. expect(dst[ 0] == 0x03020100); expect(dst[ 8127] == (kFP16 ? 0xfffefdfc : 0xfefefdfc)); expect(dst[16383] == 0xfffefdfc); // We've lost precision when transforming to 8-bit, so these won't quite round-trip. // Instead we should see the 8-bit dst value byte-doubled, as 65535/255 = 257 = 0x0101. uint64_t* back = malloc(8 * 16384); expect(skcms_Transform(dst , skcms_PixelFormat_RGBA_8888 ,skcms_AlphaFormat_Unpremul, NULL, back, skcms_PixelFormat_RGBA_16161616BE,skcms_AlphaFormat_Unpremul, NULL, 16384)); for (int i = 0; i < 16384; i++) { expect_close(bswap16((back[i] >> 0) & 0xffff), ((dst[i] >> 0) & 0xff) * 0x0101); expect_close(bswap16((back[i] >> 16) & 0xffff), ((dst[i] >> 8) & 0xff) * 0x0101); expect_close(bswap16((back[i] >> 32) & 0xffff), ((dst[i] >> 16) & 0xff) * 0x0101); expect_close(bswap16((back[i] >> 48) & 0xffff), ((dst[i] >> 24) & 0xff) * 0x0101); } free(src); free(dst); free(back); } static void test_FormatConversions_161616BE() { // We'll test the same cases as the _16161616BE() test, as if they were 4 RGB pixels. uint16_t src[] = { 0x0000, 0x0001, 0x0002, 0x0003, 0x7efc, 0x7efd, 0x7efe, 0x7eff, 0xfffc, 0xfffd, 0xfffe, 0xffff }; uint32_t dst[4]; expect(skcms_Transform(src, skcms_PixelFormat_RGB_161616BE, skcms_AlphaFormat_Unpremul, NULL, dst, skcms_PixelFormat_RGBA_8888 , skcms_AlphaFormat_Unpremul, NULL, 4)); expect(dst[0] == 0xff020100); expect(dst[1] == 0xfffdfc03); expect(dst[2] == (kFP16 ? 0xfffcfffe : 0xfffcfefe)); expect(dst[3] == 0xfffffefd); // We've lost precision when transforming to 8-bit, so these won't quite round-trip. // Instead we should see the 8-bit dst value byte doubled, as 65535/255 = 257 = 0x0101. uint16_t back[12]; expect(skcms_Transform(dst , skcms_PixelFormat_RGBA_8888 , skcms_AlphaFormat_Unpremul, NULL, back, skcms_PixelFormat_RGB_161616BE, skcms_AlphaFormat_Unpremul, NULL, 4)); uint16_t expected[] = { 0x0000, 0x0101, 0x0202, 0x0303, 0xfcfc, 0xfdfd, 0xfefe, 0xfefe, 0xfcfc, 0xfdfd, 0xfefe, 0xffff }; for (int i = 0; i < 12; i++) { expect_close(bswap16(back[i]), expected[i]); } } static void test_FormatConversions_101010() { uint32_t src = (uint32_t)1023 << 0 // 1.0. | (uint32_t) 511 << 10 // About 1/2. | (uint32_t) 4 << 20 // Smallest 10-bit channel that's non-zero in 8-bit. | (uint32_t) 1 << 30; // 1/3, smallest non-zero alpha. uint32_t dst; expect(skcms_Transform(&src, skcms_PixelFormat_RGBA_1010102, skcms_AlphaFormat_Unpremul, NULL, &dst, skcms_PixelFormat_RGBA_8888 , skcms_AlphaFormat_Unpremul, NULL, 1)); expect(dst == 0x55017fff); // Same as above, but we'll ignore the 1/3 alpha and fill in 1.0. expect(skcms_Transform(&src, skcms_PixelFormat_RGBA_1010102, skcms_AlphaFormat_Opaque , NULL, &dst, skcms_PixelFormat_RGBA_8888 , skcms_AlphaFormat_Unpremul, NULL, 1)); expect(dst == 0xff017fff); // Converting 101010x <-> 1010102 will force opaque in either direction. expect(skcms_Transform(&src, skcms_PixelFormat_RGBA_1010102, skcms_AlphaFormat_Unpremul, NULL, &dst, skcms_PixelFormat_RGBA_1010102, skcms_AlphaFormat_Opaque , NULL, 1)); expect(dst == ( (uint32_t)1023 << 0 | (uint32_t) 511 << 10 | (uint32_t) 4 << 20 | (uint32_t) 3 << 30)); expect(skcms_Transform(&src, skcms_PixelFormat_RGBA_1010102, skcms_AlphaFormat_Opaque , NULL, &dst, skcms_PixelFormat_RGBA_1010102, skcms_AlphaFormat_Unpremul, NULL, 1)); expect(dst == ( (uint32_t)1023 << 0 | (uint32_t) 511 << 10 | (uint32_t) 4 << 20 | (uint32_t) 3 << 30)); } static void test_FormatConversions_half() { uint16_t src[] = { 0x3c00, // 1.0 0x3800, // 0.5 0x1805, // Should round up to 0x01 0x1803, // Should round down to 0x00 (0x1804 may go up or down depending on precision) 0x4000, // 2.0 0x03ff, // A denorm, may be flushed to zero. 0x83ff, // A negative denorm, may be flushed to zero. 0xbc00, // -1.0 }; uint32_t dst[2]; expect(skcms_Transform(&src, skcms_PixelFormat_RGBA_hhhh, skcms_AlphaFormat_Unpremul, NULL, &dst, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, NULL, 2)); expect(dst[0] == 0x000180ff); expect(dst[1] == 0x000000ff); // Notice we've clamped 2.0 to 0xff and -1.0 to 0x00. expect(skcms_Transform(&src, skcms_PixelFormat_RGB_hhh , skcms_AlphaFormat_Unpremul, NULL, &dst, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, NULL, 2)); expect(dst[0] == 0xff0180ff); expect(dst[1] == 0xff00ff00); // Remember, this corresponds to src[3-5]. float fdst[8]; expect(skcms_Transform( &src, skcms_PixelFormat_RGBA_hhhh, skcms_AlphaFormat_Unpremul, NULL, &fdst, skcms_PixelFormat_RGBA_ffff, skcms_AlphaFormat_Unpremul, NULL, 2)); expect(fdst[0] == 1.0f); expect(fdst[1] == 0.5f); expect(fdst[2] > 1/510.0f); expect(fdst[3] < 1/510.0f); expect(fdst[4] == 2.0f); expect(fdst[5] == +0.00006097555f || fdst[5] == 0.0f); // may have been flushed to zero expect(fdst[6] == -0.00006097555f || fdst[6] == 0.0f); expect(fdst[7] == -1.0f); // Now convert back, first to RGBA halfs, then RGB halfs. uint16_t back[8]; expect(skcms_Transform(&fdst, skcms_PixelFormat_RGBA_ffff, skcms_AlphaFormat_Unpremul, NULL, &back, skcms_PixelFormat_RGBA_hhhh, skcms_AlphaFormat_Unpremul, NULL, 2)); expect(back[0] == src[0]); expect(back[1] == src[1]); expect(back[2] == src[2]); expect(back[3] == src[3]); expect(back[4] == src[4]); expect(back[5] == src[5] || back[5] == 0x0000); expect(back[6] == src[6] || back[6] == 0x0000); expect(back[7] == src[7]); expect(skcms_Transform(&fdst, skcms_PixelFormat_RGBA_ffff, skcms_AlphaFormat_Unpremul, NULL, &back, skcms_PixelFormat_RGB_hhh , skcms_AlphaFormat_Unpremul, NULL, 2)); expect(back[0] == src[0]); expect(back[1] == src[1]); expect(back[2] == src[2]); expect(back[3] == src[4]); expect(back[4] == src[5] || back[4] == 0x0000); expect(back[5] == src[6] || back[5] == 0x0000); } static void test_FormatConversions_half_norm() { const uint16_t src[] = { 0x3800, // 0.5 0x3c00, // 1.0 0xbc00, // -1.0 0x4000, // 2.0 }; uint16_t dst[ARRAY_COUNT(src)]; const skcms_AlphaFormat upm = skcms_AlphaFormat_Unpremul; // No-op, no clamp, should preserve all values. expect(skcms_Transform(&src, skcms_PixelFormat_RGBA_hhhh, upm, NULL, &dst, skcms_PixelFormat_RGBA_hhhh, upm, NULL, 1)); expect(dst[0] == src[0]); expect(dst[1] == src[1]); expect(dst[2] == src[2]); expect(dst[3] == src[3]); // Clamp on read. expect(skcms_Transform(&src, skcms_PixelFormat_RGBA_hhhh_Norm, upm, NULL, &dst, skcms_PixelFormat_RGBA_hhhh , upm, NULL, 1)); expect(dst[0] == src[0]); expect(dst[1] == src[1]); expect(dst[2] == 0x0000); expect(dst[3] == src[1]); // Clamp on write. expect(skcms_Transform(&src, skcms_PixelFormat_RGBA_hhhh , upm, NULL, &dst, skcms_PixelFormat_RGBA_hhhh_Norm, upm, NULL, 1)); expect(dst[0] == src[0]); expect(dst[1] == src[1]); expect(dst[2] == 0x0000); expect(dst[3] == src[1]); } static void test_FormatConversions_float() { float src[] = { 1.0f, 0.5f, 1/255.0f, 1/512.0f }; uint32_t dst; expect(skcms_Transform(&src, skcms_PixelFormat_RGBA_ffff, skcms_AlphaFormat_Unpremul, NULL, &dst, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, NULL, 1)); expect(dst == 0x000180ff); // Same as above, but we'll ignore the 1/512 alpha and fill in 1.0. expect(skcms_Transform(&src, skcms_PixelFormat_RGB_fff , skcms_AlphaFormat_Unpremul, NULL, &dst, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, NULL, 1)); expect(dst == 0xff0180ff); // Let's make sure each byte converts to the float we expect. uint32_t bytes[64]; float fdst[4*64]; for (int i = 0; i < 64; i++) { bytes[i] = 0x03020100 + 0x04040404 * (uint32_t)i; } expect(skcms_Transform(&bytes, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, NULL, &fdst, skcms_PixelFormat_RGBA_ffff, skcms_AlphaFormat_Unpremul, NULL, 64)); for (int i = 0; i < 256; i++) { expect_close(fdst[i], i*(1/255.0f)); if (i == 0 || i == 255) { expect(fdst[i] == i*(1/255.0f)); } } float ffff[16] = { 0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15 }; float fff[12] = { 0,0,0, 0,0,0, 0,0,0, 0,0,0}; expect(skcms_Transform(ffff, skcms_PixelFormat_RGBA_ffff, skcms_AlphaFormat_Unpremul, NULL, fff , skcms_PixelFormat_RGB_fff , skcms_AlphaFormat_Unpremul, NULL, 1)); expect(fff[0] == 0); expect(fff[1] == 1); expect(fff[2] == 2); expect(skcms_Transform(ffff, skcms_PixelFormat_RGBA_ffff, skcms_AlphaFormat_Unpremul, NULL, fff , skcms_PixelFormat_RGB_fff , skcms_AlphaFormat_Unpremul, NULL, 4)); expect(fff[0] == 0); expect(fff[ 1] == 1); expect(fff[ 2] == 2); expect(fff[3] == 4); expect(fff[ 4] == 5); expect(fff[ 5] == 6); expect(fff[6] == 8); expect(fff[ 7] == 9); expect(fff[ 8] == 10); expect(fff[9] == 12); expect(fff[10] == 13); expect(fff[11] == 14); } static const char* profile_test_cases[] = { // iccMAX profiles that we can't parse at all "profiles/color.org/sRGB_D65_colorimetric.icc", "profiles/color.org/sRGB_D65_MAT.icc", "profiles/color.org/sRGB_ISO22028.icc", // V2 or V4 profiles that only include A2B/B2A tags (no TRC or XYZ) "profiles/color.org/sRGB_ICC_v4_Appearance.icc", "profiles/color.org/sRGB_v4_ICC_preference.icc", "profiles/color.org/Upper_Left.icc", "profiles/color.org/Upper_Right.icc", "profiles/misc/Apple_Wide_Color.icc", "profiles/misc/Coated_FOGRA27_CMYK.icc", "profiles/misc/Coated_FOGRA39_CMYK.icc", "profiles/misc/ColorLogic_ISO_Coated_CMYK.icc", // Has kTRC. "profiles/misc/Japan_Color_2001_Coated.icc", "profiles/misc/Lexmark_X110.icc", "profiles/misc/MartiMaria_browsertest_A2B.icc", "profiles/misc/PrintOpen_ISO_Coated_CMYK.icc", // Has kTRC. "profiles/misc/sRGB_ICC_v4_beta.icc", "profiles/misc/SWOP_Coated_20_GCR_CMYK.icc", "profiles/misc/US_Web_Coated_SWOP_CMYK.icc", "profiles/misc/XRite_GRACol7_340_CMYK.icc", // V2 monochrome output profiles that include kTRC but no A2B "profiles/misc/Dot_Gain_20_Grayscale.icc", // kTRC table "profiles/misc/Gray_Gamma_22.icc", // kTRC gamma // V4 profiles with parametric TRC curves and XYZ "profiles/mobile/Display_P3_parametric.icc", "profiles/mobile/sRGB_parametric.icc", "profiles/mobile/iPhone7p.icc", "profiles/misc/sRGB_lcms.icc", // V4 profiles with LUT TRC curves and XYZ "profiles/mobile/Display_P3_LUT.icc", "profiles/mobile/sRGB_LUT.icc", // V2 profiles with gamma TRC and XYZ "profiles/color.org/Lower_Left.icc", "profiles/color.org/Lower_Right.icc", "profiles/misc/AdobeRGB.icc", "profiles/misc/AdobeColorSpin.icc", "profiles/misc/Color_Spin_Gamma_18.icc", "profiles/misc/Generic_RGB_Gamma_18.icc", // V2 profiles with LUT TRC and XYZ "profiles/color.org/sRGB2014.icc", "profiles/sRGB_Facebook.icc", "profiles/misc/Apple_Color_LCD.icc", "profiles/misc/HD_709.icc", "profiles/misc/sRGB_black_scaled.icc", "profiles/misc/sRGB_HP.icc", "profiles/misc/sRGB_HP_2.icc", // Calibrated monitor profile with identical sRGB-ish tables. "profiles/misc/sRGB_Calibrated_Homogeneous.icc", // Calibrated monitor profile with slightly different sRGB-like tables for each channel. "profiles/misc/sRGB_Calibrated_Heterogeneous.icc", // Calibrated monitor profile with non-monotonic TRC tables. We approximate, but badly. "profiles/misc/DisplayCal_ASUS_NonMonotonic.icc", // Hard test profile. Non-invertible XYZ, three separate tables that fail to approximate "profiles/misc/MartiMaria_browsertest_HARD.icc", // Camera profile with three separate tables that fail to approximate "profiles/misc/Phase_One_P25.icc", // Profile claims to be sRGB, but seems quite different "profiles/misc/Kodak_sRGB.icc", // Bad profiles found inn the wild "profiles/misc/ColorGATE_Sihl_PhotoPaper.icc", // Broken tag table, and A2B0 fails to parse "profiles/misc/bad_pcs.icc", // PCS is 'RGB ' // Unsure what the bug here is, chromium:875650. "profiles/misc/ThinkpadX1YogaV2.icc", "profiles/misc/XPS13_9360.icc", // fuzzer generated profiles that found parsing bugs // Bad tag table data - these should not parse "profiles/fuzz/last_tag_too_small.icc", // skia:7592 "profiles/fuzz/named_tag_too_small.icc", // skia:7592 // Bad tag data - these should not parse "profiles/fuzz/curv_size_overflow.icc", // skia:7593 "profiles/fuzz/truncated_curv_tag.icc", // oss-fuzz:6103 "profiles/fuzz/zero_a.icc", // oss-fuzz:???? "profiles/fuzz/a2b_too_many_input_channels.icc", // oss-fuzz:6521 "profiles/fuzz/mangled_trc_tags.icc", // chromium:835666 "profiles/fuzz/negative_g_para.icc", // chromium:836634 // Caused skcms_PolyTF fit to round trip indices outside the range of int. "profiles/fuzz/infinite_roundtrip.icc", // oss-fuzz:8101 "profiles/fuzz/polytf_big_float_to_int_cast.icc", // oss-fuzz:8142 // Caused skcms_ApproximateCurve to violate the a*d+b >= 0 constraint. "profiles/fuzz/inverse_tf_adb_negative.icc", // oss-fuzz:8130 // Caused skcms_PolyTF fit to send P to NaN due to very large inverse lhs "profiles/fuzz/polytf_nan_after_update.icc", // oss-fuzz:8165 // Table is approximated by an inverse TF whose inverse is not invertible. "profiles/fuzz/inverse_tf_not_invertible.icc", // chromium:841210 // Table is approximated by a TF whose inverse has g > 16M (timeout in approx_pow) "profiles/fuzz/inverse_tf_huge_g.icc", // chromium:842374 // mAB has a CLUT with 1 input channel "profiles/fuzz/one_d_clut.icc", // chromium:874433 // Non-D50 profiles. "profiles/misc/SM245B.icc", "profiles/misc/BenQ_GL2450.icc", // This profile is fine, but has really small TRC tables (5 points). "profiles/misc/BenQ_RL2455.icc", // chromium:869115 // This calibrated profile has a non-zero black. "profiles/misc/calibrated_nonzero_black.icc", // A zero g term causes a divide by zero when inverting. "profiles/fuzz/zero_g.icc", // oss-fuzz:12430 // Reasonable table, but gets approximated very badly "profiles/misc/crbug_976551.icc", // chromium:976551 // The a term goes negative when inverting. "profiles/fuzz/negative_a_when_inverted.icc", // oss-fuzz:16581 // a + b is negative when inverting, because d>0 "profiles/fuzz/negative_a_plus_b.icc", // oss-fuzz:16584 "profiles/fuzz/nan_s.icc", // oss-fuzz:16674 "profiles/fuzz/inf_a.icc", // oss-fuzz:16675 "profiles/fuzz/fit_pq.icc", // oss-fuzz:18249 // Reasonable table, bad approximation (converges very slowly) "profiles/misc/MR2416GSDF.icc", // chromium:869115 // Three different tables w/shoulders, bad approximation (slow convergence) "profiles/misc/crbug_1017960_19.icc", // chromium:1017960 }; static void test_Parse(bool regen) { for (int i = 0; i < ARRAY_COUNT(profile_test_cases); ++i) { const char* filename = profile_test_cases[i]; void* buf = NULL; size_t len = 0; expect(load_file(filename, &buf, &len)); skcms_ICCProfile profile; bool parsed = skcms_Parse(buf, len, &profile); FILE* dump = tmpfile(); expect(dump); if (parsed) { dump_profile(&profile, dump); } else { fprintf(dump, "Unable to parse ICC profile\n"); } // MakeUsable functions should leave input unchanged when returning false skcms_ICCProfile as_dst = profile; if (!skcms_MakeUsableAsDestination(&as_dst)) { expect(memcmp(&as_dst, &profile, sizeof(profile)) == 0); } as_dst = profile; if (!skcms_MakeUsableAsDestinationWithSingleCurve(&as_dst)) { expect(memcmp(&as_dst, &profile, sizeof(profile)) == 0); } void* dump_buf = NULL; size_t dump_len = 0; expect(load_file_fp(dump, &dump_buf, &dump_len)); fclose(dump); char ref_filename[256]; if (snprintf(ref_filename, sizeof(ref_filename), "%s.txt", filename) < 0) { expect(false); } if (regen) { // Just write out new test data if in regen mode expect(write_file(ref_filename, dump_buf, dump_len)); } else { // Read in existing test data void* ref_buf = NULL; size_t ref_len = 0; expect(load_file(ref_filename, &ref_buf, &ref_len)); if (dump_len != ref_len || memcmp(dump_buf, ref_buf, dump_len) != 0) { // Write out the new data on a mismatch fprintf(stderr, "Parse mismatch for %s:\n", filename); fwrite(dump_buf, 1, dump_len, stderr); fprintf(stderr, "\n"); expect(false); } free(ref_buf); } free(buf); free(dump_buf); } } static void test_ApproximateCurve_clamped() { // These data represent a transfer function that is clamped at the high // end of its domain. It comes from the color profile attached to // https://crbug.com/750459 float t[256] = { 0.000000f, 0.000305f, 0.000610f, 0.000916f, 0.001221f, 0.001511f, 0.001816f, 0.002121f, 0.002426f, 0.002731f, 0.003037f, 0.003601f, 0.003937f, 0.004303f, 0.004685f, 0.005081f, 0.005509f, 0.005951f, 0.006409f, 0.006882f, 0.007385f, 0.007904f, 0.008438f, 0.009003f, 0.009583f, 0.010193f, 0.010819f, 0.011460f, 0.012131f, 0.012818f, 0.013535f, 0.014267f, 0.015030f, 0.015808f, 0.016617f, 0.017456f, 0.018296f, 0.019181f, 0.020081f, 0.021012f, 0.021958f, 0.022934f, 0.023926f, 0.024949f, 0.026001f, 0.027070f, 0.028168f, 0.029297f, 0.030442f, 0.031617f, 0.032822f, 0.034058f, 0.035309f, 0.036591f, 0.037903f, 0.039231f, 0.040604f, 0.041993f, 0.043412f, 0.044846f, 0.046326f, 0.047822f, 0.049348f, 0.050904f, 0.052491f, 0.054108f, 0.055756f, 0.057420f, 0.059113f, 0.060853f, 0.062608f, 0.064393f, 0.066209f, 0.068055f, 0.069932f, 0.071839f, 0.073762f, 0.075731f, 0.077729f, 0.079759f, 0.081804f, 0.083894f, 0.086015f, 0.088167f, 0.090333f, 0.092546f, 0.094789f, 0.097063f, 0.099367f, 0.101701f, 0.104067f, 0.106477f, 0.108904f, 0.111360f, 0.113863f, 0.116381f, 0.118944f, 0.121538f, 0.124163f, 0.126818f, 0.129519f, 0.132235f, 0.134997f, 0.137789f, 0.140612f, 0.143465f, 0.146365f, 0.149279f, 0.152239f, 0.155230f, 0.158267f, 0.161318f, 0.164416f, 0.167544f, 0.170718f, 0.173907f, 0.177142f, 0.180407f, 0.183719f, 0.187045f, 0.190433f, 0.193835f, 0.197284f, 0.200763f, 0.204273f, 0.207813f, 0.211398f, 0.215030f, 0.218692f, 0.222385f, 0.226108f, 0.229877f, 0.233677f, 0.237522f, 0.241382f, 0.245304f, 0.249256f, 0.253239f, 0.257252f, 0.261311f, 0.265415f, 0.269551f, 0.273716f, 0.277928f, 0.282170f, 0.286458f, 0.290776f, 0.295140f, 0.299535f, 0.303975f, 0.308446f, 0.312947f, 0.317494f, 0.322087f, 0.326711f, 0.331380f, 0.336080f, 0.340826f, 0.345602f, 0.350423f, 0.355291f, 0.360174f, 0.365118f, 0.370092f, 0.375113f, 0.380163f, 0.385260f, 0.390387f, 0.395560f, 0.400778f, 0.406027f, 0.411322f, 0.416663f, 0.422034f, 0.427451f, 0.432898f, 0.438392f, 0.443931f, 0.449500f, 0.455116f, 0.460777f, 0.466468f, 0.472221f, 0.477989f, 0.483818f, 0.489677f, 0.495583f, 0.501518f, 0.507500f, 0.513527f, 0.519600f, 0.525719f, 0.531868f, 0.538064f, 0.544289f, 0.550576f, 0.556893f, 0.563256f, 0.569650f, 0.576104f, 0.582589f, 0.589120f, 0.595697f, 0.602304f, 0.608972f, 0.615671f, 0.622415f, 0.629206f, 0.636027f, 0.642908f, 0.649821f, 0.656779f, 0.663783f, 0.670832f, 0.677913f, 0.685054f, 0.692226f, 0.699443f, 0.706706f, 0.714015f, 0.721370f, 0.728771f, 0.736202f, 0.743694f, 0.751217f, 0.758785f, 0.766400f, 0.774060f, 0.781765f, 0.789517f, 0.797314f, 0.805158f, 0.813031f, 0.820966f, 0.828946f, 0.836957f, 0.845029f, 0.853132f, 0.861280f, 0.869490f, 0.877729f, 0.886015f, 0.894362f, 0.902739f, 0.911162f, 0.919631f, 0.928161f, 0.936721f, 0.945327f, 0.953994f, 0.962692f, 0.971435f, 0.980240f, 0.989075f, 0.997955f, 1.000000f, }; uint8_t table_8[ARRAY_COUNT(t)]; for (int i = 0; i < ARRAY_COUNT(t); i++) { table_8[i] = (uint8_t)(t[i] * 255.0f + 0.5f); } skcms_Curve curve; curve.table_entries = (uint32_t)ARRAY_COUNT(t); curve.table_8 = table_8; skcms_TransferFunction tf; float max_error; expect(skcms_ApproximateCurve(&curve, &tf, &max_error)); // The approximation isn't very good. expect(max_error < 1 / 40.0f); } static void expect_eq_Matrix3x3(skcms_Matrix3x3 a, skcms_Matrix3x3 b) { for (int r = 0; r < 3; r++) for (int c = 0; c < 3; c++) { expect(a.vals[r][c] == b.vals[r][c]); } } static void test_Matrix3x3_invert() { skcms_Matrix3x3 inv; skcms_Matrix3x3 I = {{ { 1.0f, 0.0f, 0.0f }, { 0.0f, 1.0f, 0.0f }, { 0.0f, 0.0f, 1.0f }, }}; inv = (skcms_Matrix3x3){{ {0,0,0}, {0,0,0}, {0,0,0} }}; expect(skcms_Matrix3x3_invert(&I, &inv)); expect_eq_Matrix3x3(inv, I); skcms_Matrix3x3 T = {{ { 1.0f, 0.0f, 3.0f }, { 0.0f, 1.0f, 4.0f }, { 0.0f, 0.0f, 1.0f }, }}; inv = (skcms_Matrix3x3){{ {0,0,0}, {0,0,0}, {0,0,0} }}; expect(skcms_Matrix3x3_invert(&T, &inv)); expect_eq_Matrix3x3(inv, (skcms_Matrix3x3){{ { 1.0f, 0.0f, -3.0f }, { 0.0f, 1.0f, -4.0f }, { 0.0f, 0.0f, 1.0f }, }}); skcms_Matrix3x3 S = {{ { 2.0f, 0.0f, 0.0f }, { 0.0f, 4.0f, 0.0f }, { 0.0f, 0.0f, 8.0f }, }}; inv = (skcms_Matrix3x3){{ {0,0,0}, {0,0,0}, {0,0,0} }}; expect(skcms_Matrix3x3_invert(&S, &inv)); expect_eq_Matrix3x3(inv, (skcms_Matrix3x3){{ { 0.500f, 0.000f, 0.000f }, { 0.000f, 0.250f, 0.000f }, { 0.000f, 0.000f, 0.125f }, }}); } static void test_SimpleRoundTrip() { // We'll test that parametric sRGB roundtrips with itself, bytes -> bytes. void* srgb_ptr; size_t srgb_len; expect(load_file("profiles/mobile/sRGB_parametric.icc", &srgb_ptr, &srgb_len)); skcms_ICCProfile srgbA, srgbB; expect(skcms_Parse(srgb_ptr, srgb_len, &srgbA)); expect(skcms_Parse(srgb_ptr, srgb_len, &srgbB)); uint8_t src[256], dst[256]; for (int i = 0; i < 256; i++) { src[i] = (uint8_t)i; } expect(skcms_Transform(src, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, &srgbB, dst, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, &srgbA, 64)); for (int i = 0; i < 256; i++) { expect(dst[i] == (uint8_t)i); } free(srgb_ptr); } // Floats should hold enough precision that we can round trip any two non-degenerate profiles. static void expect_round_trip_through_floats(const skcms_ICCProfile* A, const skcms_ICCProfile* B) { uint8_t bytes[256]; float floats[256]; for (int i = 0; i < 256; i++) { bytes[i] = (uint8_t)i; } expect(skcms_Transform(bytes , skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, B, floats, skcms_PixelFormat_RGBA_ffff, skcms_AlphaFormat_Unpremul, A, 64)); for (int i = 0; i < 256; i++) { bytes[i] = 0; } expect(skcms_Transform(floats, skcms_PixelFormat_RGBA_ffff, skcms_AlphaFormat_Unpremul, A, bytes , skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, B, 64)); for (int i = 0; i < 256; i++) { expect(bytes[i] == (uint8_t)i); } } static void test_FloatRoundTrips() { void* srgb_ptr; size_t srgb_len; expect(load_file("profiles/mobile/sRGB_parametric.icc", &srgb_ptr, &srgb_len)); void* dp3_ptr; size_t dp3_len; expect(load_file("profiles/mobile/Display_P3_parametric.icc", &dp3_ptr, &dp3_len)); void* ll_ptr; size_t ll_len; expect(load_file("profiles/color.org/Lower_Left.icc", &ll_ptr, &ll_len)); void* lr_ptr; size_t lr_len; expect(load_file("profiles/color.org/Lower_Right.icc", &lr_ptr, &lr_len)); skcms_ICCProfile srgb, dp3, ll, lr; expect(skcms_Parse(srgb_ptr, srgb_len, &srgb)); expect(skcms_Parse( dp3_ptr, dp3_len, &dp3 )); expect(skcms_Parse( ll_ptr, ll_len, &ll )); expect(skcms_Parse( lr_ptr, lr_len, &lr )); const skcms_ICCProfile* profiles[] = { &srgb, &dp3, &ll, &lr }; for (int i = 0; i < ARRAY_COUNT(profiles); i++) for (int j = 0; j < ARRAY_COUNT(profiles); j++) { expect_round_trip_through_floats(profiles[i], profiles[j]); } free(srgb_ptr); free( dp3_ptr); free( ll_ptr); free( lr_ptr); } static void test_sRGB_AllBytes() { // Test that our transfer function implementation is perfect to at least 8-bit precision. void* ptr; size_t len; skcms_ICCProfile sRGB; expect( load_file("profiles/mobile/sRGB_parametric.icc", &ptr, &len) ); expect( skcms_Parse(ptr, len, &sRGB) ); skcms_ICCProfile linear_sRGB = sRGB; linear_sRGB.trc[0].parametric = (skcms_TransferFunction){ 1,1,0,0,0,0,0 }; linear_sRGB.trc[1].parametric = (skcms_TransferFunction){ 1,1,0,0,0,0,0 }; linear_sRGB.trc[2].parametric = (skcms_TransferFunction){ 1,1,0,0,0,0,0 }; // Enough to hit all distinct bytes when interpreted as RGB 888. uint8_t src[258], dst[258]; for (int i = 0; i < 258; i++) { src[i] = (uint8_t)(i & 0xFF); // (We don't really care about bytes 256 and 257.) } expect( skcms_Transform(src, skcms_PixelFormat_RGB_888, skcms_AlphaFormat_Unpremul, &sRGB, dst, skcms_PixelFormat_RGB_888, skcms_AlphaFormat_Unpremul, &linear_sRGB, 258/3) ); for (int i = 0; i < 256; i++) { float linear = skcms_TransferFunction_eval(&sRGB.trc[0].parametric, i * (1/255.0f)); uint8_t expected = (uint8_t)(linear * 255.0f + 0.5f); if (dst[i] != expected) { fprintf(stderr, "%d -> %u, want %u\n", i, dst[i], expected); } expect(dst[i] == expected); } free(ptr); } static void test_TRC_Table16() { // We'll convert from FB (table-based sRGB) to sRGB (parametric sRGB). skcms_ICCProfile FB, sRGB; void *FB_ptr, *sRGB_ptr; size_t FB_len, sRGB_len; expect( load_file("profiles/sRGB_Facebook.icc" , & FB_ptr, & FB_len) ); expect( load_file("profiles/mobile/sRGB_parametric.icc", &sRGB_ptr, &sRGB_len) ); expect( skcms_Parse( FB_ptr, FB_len, & FB) ); expect( skcms_Parse(sRGB_ptr, sRGB_len, &sRGB) ); // Enough to hit all distinct bytes when interpreted as RGB 888. uint8_t src[258], dst[258]; for (int i = 0; i < 258; i++) { src[i] = (uint8_t)(i & 0xFF); // (We don't really care about bytes 256 and 257.) } expect( skcms_Transform(src, skcms_PixelFormat_RGB_888, skcms_AlphaFormat_Unpremul, &FB, dst, skcms_PixelFormat_RGB_888, skcms_AlphaFormat_Unpremul, &sRGB, 258/3) ); for (int i = 0; i < 256; i++) { expect( dst[i] == i ); } free( FB_ptr); free(sRGB_ptr); } static void test_Premul() { void* ptr; size_t len; skcms_ICCProfile sRGB; expect( load_file("profiles/mobile/sRGB_parametric.icc", &ptr, &len) ); expect( skcms_Parse(ptr, len, &sRGB) ); expect (sRGB.has_trc && sRGB.trc[0].table_entries == 0); const skcms_TransferFunction* tf = &sRGB.trc[0].parametric; skcms_TransferFunction inv; expect (skcms_TransferFunction_invert(tf, &inv)); uint8_t src[256], dst[256] = {0}; for (int i = 0; i < 256; i++) { src[i] = (uint8_t)i; } expect(skcms_Transform( src, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul , &sRGB, dst, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_PremulAsEncoded, &sRGB, 64)); for (int i = 0; i < 256; i+=4) { expect_close( dst[i+0], (uint8_t)( src[i+0] * (src[i+3]/255.0f) + 0.5f ) ); expect_close( dst[i+1], (uint8_t)( src[i+1] * (src[i+3]/255.0f) + 0.5f ) ); expect_close( dst[i+2], (uint8_t)( src[i+2] * (src[i+3]/255.0f) + 0.5f ) ); expect ( dst[i+3] == src[i+3] ); } expect(skcms_Transform( src, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_PremulAsEncoded, &sRGB, dst, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul , &sRGB, 64)); for (int i = 0; i < 256; i+=4) { expect_close( dst[i+0], (uint8_t)( src[i+0] / (src[i+3]/255.0f) + 0.5f ) ); expect_close( dst[i+1], (uint8_t)( src[i+1] / (src[i+3]/255.0f) + 0.5f ) ); expect_close( dst[i+2], (uint8_t)( src[i+2] / (src[i+3]/255.0f) + 0.5f ) ); expect ( dst[i+3] == src[i+3] ); } free(ptr); } static void test_ByteToLinearFloat() { uint32_t src[1] = { 0xFFFFFFFF }; float dst[4]; void* srgb_ptr; size_t srgb_len; expect(load_file("profiles/mobile/sRGB_parametric.icc", &srgb_ptr, &srgb_len)); skcms_ICCProfile srgb, srgb_linear; expect(skcms_Parse(srgb_ptr, srgb_len, &srgb)); srgb_linear = srgb; for (int i = 0; i < 3; ++i) { srgb_linear.trc[i].parametric.g = 1.0f; srgb_linear.trc[i].parametric.a = 1.0f; srgb_linear.trc[i].parametric.b = 0.0f; srgb_linear.trc[i].parametric.c = 0.0f; srgb_linear.trc[i].parametric.d = 0.0f; srgb_linear.trc[i].parametric.e = 0.0f; srgb_linear.trc[i].parametric.f = 0.0f; } skcms_Transform(src, skcms_PixelFormat_BGRA_8888, skcms_AlphaFormat_Unpremul, &srgb, dst, skcms_PixelFormat_RGBA_ffff, skcms_AlphaFormat_Unpremul, &srgb_linear, 1); expect(dst[0] == 1.0f); expect(dst[1] == 1.0f); expect(dst[2] == 1.0f); expect(dst[3] == 1.0f); free(srgb_ptr); } // This test is written with the expectation that we use A2B1, not A2B0. #if 0 static void test_CLUT() { // Identity* transform from a v4 A2B profile to good old parametric sRGB. // * Approximate identity, apparently? void *srgb_ptr, *a2b_ptr; size_t srgb_len, a2b_len; expect(load_file("profiles/mobile/sRGB_parametric.icc", &srgb_ptr, &srgb_len)); expect(load_file("profiles/color.org/sRGB_ICC_v4_Appearance.icc", & a2b_ptr, & a2b_len)); skcms_ICCProfile srgb, a2b; expect( skcms_Parse(srgb_ptr, srgb_len, &srgb) ); expect( skcms_Parse( a2b_ptr, a2b_len, & a2b) ); // We'll test some edge and middle RGB values. uint8_t src[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x7f, 0x00, 0x00, 0xff, 0x00, 0x7f, 0x00, 0x00, 0xff, 0x00, 0x00, 0x7f, 0x7f, 0x00, 0xff, 0xff, 0x7f, 0x00, 0x00, 0xff, 0x00, 0x00, 0x7f, 0x00, 0x7f, 0xff, 0x00, 0xff, 0x7f, 0x7f, 0x00, 0xff, 0xff, 0x00, 0x7f, 0x7f, 0x7f, 0xff, 0xff, 0xff, }, dst[ARRAY_COUNT(src)]; expect(skcms_Transform(src, skcms_PixelFormat_RGB_888, skcms_AlphaFormat_Unpremul, &a2b, dst, skcms_PixelFormat_RGB_888, skcms_AlphaFormat_Unpremul, &srgb, ARRAY_COUNT(src)/3)); for (int i = 0; i < ARRAY_COUNT(src); i++) { // We'd like these all to be perfect (tol = 0), // but that doesn't seem to be what the profile is telling us to do. int tol = 1; if (src[i] == 0) { tol = 9; } if (abs(dst[i] - src[i]) > tol) { printf("%d: %d vs %d\n", i, dst[i], src[i]); } expect(abs(dst[i] - src[i]) <= tol); } free(srgb_ptr); free(a2b_ptr); } #endif static void test_MakeUsableAsDestination() { void* ptr; size_t len; expect(load_file("profiles/mobile/sRGB_LUT.icc", &ptr, &len)); skcms_ICCProfile profile; expect(skcms_Parse(ptr, len, &profile)); uint32_t src = 0xffaaccee, dst; // We can't transform to table-based profiles (yet?). expect(!skcms_Transform( &src, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, skcms_sRGB_profile(), &dst, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, &profile, 1)); // We should be able to approximate this profile expect(skcms_MakeUsableAsDestination(&profile)); // Now the transform should work. expect(skcms_Transform( &src, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, skcms_sRGB_profile(), &dst, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, &profile, 1)); // This should be pretty much an identity transform. expect(dst == 0xffaaccee); free(ptr); } static void test_MakeUsableAsDestinationAdobe() { void* ptr; size_t len; expect(load_file("profiles/misc/AdobeRGB.icc", &ptr, &len)); skcms_ICCProfile profile; expect(skcms_Parse(ptr, len, &profile)); skcms_ICCProfile usable_as_dst = profile; expect(skcms_MakeUsableAsDestination(&usable_as_dst)); // This profile was already parametric, so it should remain unchanged expect(memcmp(&usable_as_dst, &profile, sizeof(profile)) == 0); // Same sequence as above, using the more aggressive SingleCurve version. skcms_ICCProfile single_curve = profile; expect(skcms_MakeUsableAsDestinationWithSingleCurve(&single_curve)); expect(memcmp(&single_curve, &profile, sizeof(profile)) == 0); free(ptr); } static void test_AdaptToD50() { skcms_Matrix3x3 xyz_to_xyzD50; float x_D65 = 0.3127f; float y_D65 = 0.3290f; expect(skcms_AdaptToXYZD50(x_D65, y_D65, &xyz_to_xyzD50)); skcms_Matrix3x3 sRGB_D65 = {{ { 0.4124564f, 0.3575761f, 0.1804375f }, { 0.2126729f, 0.7151522f, 0.0721750f }, { 0.0193339f, 0.1191920f, 0.9503041f } }}; skcms_Matrix3x3 sRGB_D50 = skcms_Matrix3x3_concat(&xyz_to_xyzD50, &sRGB_D65); skcms_ICCProfile p = *skcms_sRGB_profile(); for (int r = 0; r < 3; ++r) for (int c = 0; c < 3; ++c) { expect(fabsf_(sRGB_D50.vals[r][c] - p.toXYZD50.vals[r][c]) < 0.0001f); } } static void test_PrimariesToXYZ() { skcms_Matrix3x3 srgb_to_xyz; expect(skcms_PrimariesToXYZD50(0.64f, 0.33f, 0.30f, 0.60f, 0.15f, 0.06f, 0.3127f, 0.3290f, &srgb_to_xyz)); skcms_ICCProfile p = *skcms_sRGB_profile(); for (int r = 0; r < 3; ++r) for (int c = 0; c < 3; ++c) { expect(fabsf_(srgb_to_xyz.vals[r][c] - p.toXYZD50.vals[r][c]) < 0.0001f); } } static void test_Programmatic_sRGB() { skcms_Matrix3x3 srgb_to_xyz; expect(skcms_PrimariesToXYZD50(0.64f, 0.33f, 0.30f, 0.60f, 0.15f, 0.06f, 0.3127f, 0.3290f, &srgb_to_xyz)); skcms_ICCProfile srgb = *skcms_sRGB_profile(); skcms_ICCProfile p; skcms_Init(&p); skcms_SetTransferFunction(&p, &srgb.trc[0].parametric); skcms_SetXYZD50(&p, &srgb_to_xyz); expect(skcms_ApproximatelyEqualProfiles(&p, &srgb)); } static void test_ExactlyEqual() { const skcms_ICCProfile* srgb = skcms_sRGB_profile(); skcms_ICCProfile copy = *srgb; expect(skcms_ApproximatelyEqualProfiles( srgb, srgb)); expect(skcms_ApproximatelyEqualProfiles( srgb, ©)); expect(skcms_ApproximatelyEqualProfiles(©, srgb)); expect(skcms_ApproximatelyEqualProfiles(©, ©)); // This should make a bitwise exact copy of sRGB. skcms_ICCProfile exact; skcms_Init(&exact); skcms_SetTransferFunction(&exact, &srgb->trc[0].parametric); skcms_SetXYZD50(&exact, &srgb->toXYZD50); expect(0 == memcmp(&exact, srgb, sizeof(skcms_ICCProfile))); } static void test_Clamp() { // Test that we clamp out-of-gamut values when converting to fixed point, // not just to byte value range but also to gamut (for compatibility with // older systems). void* dp3_ptr; size_t dp3_len; expect(load_file("profiles/mobile/Display_P3_parametric.icc", &dp3_ptr, &dp3_len)); // Here's the basic premise of the test: sRGB can't represent P3's full green, // but if we scale it by 50% alpha, it would "fit" in a byte. We want to avoid that. skcms_ICCProfile src, dst = *skcms_sRGB_profile(); skcms_Parse(dp3_ptr, dp3_len, &src); uint8_t rgba[] = { 0, 255, 0, 127 }; // First double check that the green channel is out of gamut by transforming to float. float flts[4]; skcms_Transform(rgba, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul, &src, flts, skcms_PixelFormat_RGBA_ffff, skcms_AlphaFormat_Unpremul, &dst, 1); expect(flts[0] < 0); // A typical out-of-gamut green. r,b are negative, and g > 1. expect(flts[1] > 1); expect(flts[2] < 0); expect_close(flts[3], 127*(1/255.0f)); // Now the real test, making sure we clamp that green channel to 1.0 before premul. skcms_Transform(rgba, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_Unpremul , &src, rgba, skcms_PixelFormat_RGBA_8888, skcms_AlphaFormat_PremulAsEncoded, &dst, 1); expect(rgba[0] == 0); expect(rgba[1] == 127); // would be 129 if we clamped after premul expect(rgba[2] == 0); expect(rgba[3] == 127); free(dp3_ptr); } static void test_AliasedTransforms() { // We should be able to skcms_Transform() in place if the source and destination // buffers are perfectly aligned and the pixel formats are the same size. uint64_t buf = 0; skcms_AlphaFormat upm = skcms_AlphaFormat_Unpremul; const skcms_ICCProfile *srgb = skcms_sRGB_profile(), *xyz = skcms_XYZD50_profile(); expect( skcms_Transform(&buf, skcms_PixelFormat_A_8, upm, srgb, &buf, skcms_PixelFormat_G_8, upm, xyz, 1) ); expect( skcms_Transform(&buf, skcms_PixelFormat_RGB_565 , upm, srgb, &buf, skcms_PixelFormat_ABGR_4444, upm, xyz, 1) ); expect( skcms_Transform(&buf, skcms_PixelFormat_RGBA_8888 , upm, srgb, &buf, skcms_PixelFormat_RGBA_1010102, upm, xyz, 1) ); expect( skcms_Transform(&buf, skcms_PixelFormat_RGB_161616BE, upm, srgb, &buf, skcms_PixelFormat_BGR_hhh , upm, xyz, 1) ); expect( skcms_Transform(&buf, skcms_PixelFormat_RGB_161616LE, upm, srgb, &buf, skcms_PixelFormat_BGR_161616BE, upm, xyz, 1) ); } static void test_Palette8() { uint32_t palette[256]; for (int i = 0; i < 256; i++) { palette[i] = (uint32_t)(255 - i) * 0x01010101; } uint8_t src[512]; uint32_t dst[512]; for (int i = 0; i < 512; i++) { src[i] = (uint8_t)(i % 256); } const skcms_ICCProfile* srgb = skcms_sRGB_profile(); const skcms_AlphaFormat upm = skcms_AlphaFormat_Unpremul; expect( skcms_TransformWithPalette(src, skcms_PixelFormat_RGBA_8888_Palette8, upm, srgb, dst, skcms_PixelFormat_RGBA_8888 , upm, srgb, 512, palette) ); for (int i = 0; i < 512; i++) { uint32_t expected = (uint32_t)(255 - i%256) * 0x01010101; expect( dst[i] == expected ); } // Double check we can't transform skcms_PixelFormat_RGBA_8888_Palette8 without a palette. expect( !skcms_Transform(src, skcms_PixelFormat_RGBA_8888_Palette8, upm, srgb, dst, skcms_PixelFormat_RGBA_8888 , upm, srgb, 512) ); expect( !skcms_TransformWithPalette(src, skcms_PixelFormat_RGBA_8888_Palette8, upm, srgb, dst, skcms_PixelFormat_RGBA_8888 , upm, srgb, 512, NULL) ); } static void test_TF_invert() { const skcms_TransferFunction *sRGB = skcms_sRGB_TransferFunction(), *inv = skcms_sRGB_Inverse_TransferFunction(); expect(1.0f == skcms_TransferFunction_eval(sRGB, 1.0f)); expect(1.0f == skcms_TransferFunction_eval( inv, 1.0f)); skcms_TransferFunction sRGB2, inv2; expect(skcms_TransferFunction_invert( inv, &sRGB2)); expect(skcms_TransferFunction_invert(sRGB, & inv2)); expect(1.0f == skcms_TransferFunction_eval(&sRGB2, 1.0f)); expect(1.0f == skcms_TransferFunction_eval(& inv2, 1.0f)); expect(0 == memcmp( inv, & inv2, sizeof(skcms_TransferFunction))); //expect(0 == memcmp(sRGB, &sRGB2, sizeof(skcms_TransferFunction))); } static void test_PQ() { { // This PQ function maps [0,1] to [0,1]. skcms_TransferFunction pq; expect(skcms_TransferFunction_makePQ(&pq)); expect(0.0000f == skcms_TransferFunction_eval(&pq, 0.0f)); expect(1.0000f == skcms_TransferFunction_eval(&pq, 1.0f)); // 100 nits is around 0.508. expect(0.0099f < skcms_TransferFunction_eval(&pq, 0.508f)); expect(0.0101f > skcms_TransferFunction_eval(&pq, 0.508f)); // Try again with skcms_transform(). float rgb[] = {0.0f,1.0f,0.508f}; skcms_ICCProfile src = *skcms_XYZD50_profile(), dst = *skcms_XYZD50_profile(); skcms_SetTransferFunction(&src, &pq); expect(skcms_Transform(rgb, skcms_PixelFormat_RGB_fff,skcms_AlphaFormat_Unpremul, &src, rgb, skcms_PixelFormat_RGB_fff,skcms_AlphaFormat_Unpremul, &dst, 1)); expect(rgb[0] == 0.0f); expect(rgb[1] == 1.0f); expect(0.0099f < rgb[2] && rgb[2] < 0.0101f); // And back. expect(skcms_Transform(rgb, skcms_PixelFormat_RGB_fff,skcms_AlphaFormat_Unpremul, &dst, rgb, skcms_PixelFormat_RGB_fff,skcms_AlphaFormat_Unpremul, &src, 1)); expect(0 < rgb[0] && rgb[0] < 1e-6); // TODO: can we get this perfect? expect(rgb[1] == 1.0f); expect(0.507f < rgb[2] && rgb[2] < 0.508f); } { // Let's see if we can get absolute 0-10000 nits. skcms_TransferFunction pq_abs; // Mathematically to get 10000 on the output, we want to // scale the A and B PQ terms by R = 10000 ^ (1/F). float R = powf_(10000.0f, 1305/8192.0f); // ~= 4.33691 expect(skcms_TransferFunction_makePQish(&pq_abs, R*(-107/128.0f), R* 1.0f, 32/2523.0f, 2413/128.0f, -2392/128.0f, 8192/1305.0f)); // That gets us close. expect(0.0f == skcms_TransferFunction_eval(&pq_abs, 0.0f)); expect( 99.8f < skcms_TransferFunction_eval(&pq_abs, 0.508f)); expect( 100.0f > skcms_TransferFunction_eval(&pq_abs, 0.508f)); expect( 9989.0f < skcms_TransferFunction_eval(&pq_abs, 1.0f)); expect( 9991.0f > skcms_TransferFunction_eval(&pq_abs, 1.0f)); // We can get a lot closer with an unprincpled tweak to that math. R = powf_(10009.9f, 1305/8192.0f); // ~= 4.33759 expect(skcms_TransferFunction_makePQish(&pq_abs, R*(-107/128.0f), R* 1.0f, 32/2523.0f, 2413/128.0f, -2392/128.0f, 8192/1305.0f)); expect(0.0f == skcms_TransferFunction_eval(&pq_abs, 0.0f)); expect( 99.9f < skcms_TransferFunction_eval(&pq_abs, 0.508f)); expect( 100.0f > skcms_TransferFunction_eval(&pq_abs, 0.508f)); expect( 9999.0f < skcms_TransferFunction_eval(&pq_abs, 1.0f)); expect(10000.0f > skcms_TransferFunction_eval(&pq_abs, 1.0f)); } } static void test_HLG() { skcms_TransferFunction enc, dec; expect(skcms_TransferFunction_makeHLG(&dec)); expect(skcms_TransferFunction_invert(&dec, &enc)); // Spot check the lower half of the curve. // Linear 0 encodes as 0.5*(0)^0.5 == 0. expect(0.0f == skcms_TransferFunction_eval(&enc, 0.0f)); expect(0.0f == skcms_TransferFunction_eval(&dec, 0.0f)); // Linear 1 encodes as 0.5*(1)^0.5 == 0.5 expect(0.5f == skcms_TransferFunction_eval(&enc, 1.0f)); expect(1.0f == skcms_TransferFunction_eval(&dec, 0.5f)); // Linear 0.5 encodes as 0.5*(0.5)^0.5, about 0.3535. expect(0.3535f < skcms_TransferFunction_eval(&enc, 0.5f)); expect(0.3536f > skcms_TransferFunction_eval(&enc, 0.5f)); expect(0.5000f < skcms_TransferFunction_eval(&dec, skcms_TransferFunction_eval(&enc, 0.5f))); expect(0.5001f > skcms_TransferFunction_eval(&dec, skcms_TransferFunction_eval(&enc, 0.5f))); // Spot check upper half of the curve. // We should have some continuity with the lower half. expect(0.5000f < skcms_TransferFunction_eval(&enc, 1.000001f)); expect(0.5001f > skcms_TransferFunction_eval(&enc, 1.000001f)); // TODO: this isn't really the best round-trip precision. expect(1.000001f < skcms_TransferFunction_eval(&dec, skcms_TransferFunction_eval(&enc, 1.000001f))); expect(1.000010f > skcms_TransferFunction_eval(&dec, skcms_TransferFunction_eval(&enc, 1.000001f))); // The maximum value we can encode should be 12. // TODO: it'd be nice to get this to exactly 1.0f. expect(0.999999f < skcms_TransferFunction_eval(&enc, 12.0f)); expect(1.000000f > skcms_TransferFunction_eval(&enc, 12.0f)); // TODO: it'd be nice to get this to exactly 12.0f. expect(12.00000f < skcms_TransferFunction_eval(&dec, 1.0f)); expect(12.00001f > skcms_TransferFunction_eval(&dec, 1.0f)); // Now let's try that all again with skcms_Transform(), first linear -> HLG. float rgb[] = { 0.0f,1.0f,0.5f, 1.000001f,6.0f,12.0f }; skcms_ICCProfile src = *skcms_XYZD50_profile(), dst = *skcms_XYZD50_profile(); skcms_SetTransferFunction(&dst, &dec); expect(skcms_Transform(rgb, skcms_PixelFormat_RGB_fff,skcms_AlphaFormat_Unpremul, &src, rgb, skcms_PixelFormat_RGB_fff,skcms_AlphaFormat_Unpremul, &dst, 2)); expect(rgb[0] == 0.0f); expect(rgb[1] == 0.5f); expect(0.35350f < rgb[2] && rgb[2] < 0.35360f); expect(0.50000f < rgb[3] && rgb[3] < 0.50010f); expect(0.87164f < rgb[4] && rgb[4] < 0.87165f); expect(0.99999f < rgb[5] && rgb[5] < 1.00000f); // Convert back. expect(skcms_Transform(rgb, skcms_PixelFormat_RGB_fff,skcms_AlphaFormat_Unpremul, &dst, rgb, skcms_PixelFormat_RGB_fff,skcms_AlphaFormat_Unpremul, &src, 2)); expect(rgb[0] == 0.0f); expect(rgb[1] == 1.0f); expect( 0.50000f < rgb[2] && rgb[2] < 0.50001f); expect( 1.00000f < rgb[3] && rgb[3] < 1.00001f); expect( 6.00000f < rgb[4] && rgb[4] < 6.00001f); expect(12.00000f < rgb[5] && rgb[5] < 12.00001f); } static void test_PQ_invert() { skcms_TransferFunction pqA, invA, invB; expect(skcms_TransferFunction_makePQ(&pqA)); // PQ's inverse is actually also PQish, so we can write out its expected value here. expect(skcms_TransferFunction_makePQish(&invA, 107/128.0f, 2413/128.0f, 1305/8192.0f , 1.0f, 2392/128.0f, 2523/ 32.0f)); expect(skcms_TransferFunction_invert(&pqA, &invB)); // a,b,d,e really just negate and swap around, // so those should be exact. c and f will 1.0f/x // each other, so they might not be exactly perfect, // but it turns out we do get lucky here. expect(invA.g == invB.g); // I.e. are we still PQ? expect(invA.a == invB.a); expect(invA.b == invB.b); expect(invA.c == invB.c); // We got lucky here. expect(invA.d == invB.d); expect(invA.e == invB.e); expect(invA.f == invB.f); // And here. // Just for fun, invert back to PQ. // This just tests the same code path twice. skcms_TransferFunction pqB; expect(skcms_TransferFunction_invert(&invA, &pqB)); expect(pqA.g == pqB.g); expect(pqA.a == pqB.a); expect(pqA.b == pqB.b); expect(pqA.c == pqB.c); expect(pqA.d == pqB.d); expect(pqA.e == pqB.e); expect(pqA.f == pqB.f); // PQ functions invert to the same form. expect(pqA.g == invA.g); // TODO: would be nice for this to pass. #if 0 skcms_Curve pq_curve = {{0, pqA}}, inv_curve = {{0, invA}}; expect(skcms_AreApproximateInverses(& pq_curve, &invA)); expect(skcms_AreApproximateInverses(&inv_curve, & pqA)); #endif } static void test_HLG_invert() { skcms_TransferFunction hlg, inv; expect(skcms_TransferFunction_makeHLG(&hlg)); // Unlike PQ, we can't create HLG's inverse directly, only via _invert(). expect(skcms_TransferFunction_invert(&hlg, &inv)); skcms_TransferFunction back; expect(skcms_TransferFunction_invert(&inv, &back)); expect(hlg.g == back.g); expect(hlg.a == back.a); expect(hlg.b == back.b); expect(hlg.c == back.c); expect(hlg.d == back.d); expect(hlg.e == back.e); expect(hlg.f == back.f); // HLG functions invert between two different forms. expect(hlg.g != inv.g); skcms_Curve hlg_curve = {{0, hlg}}, inv_curve = {{0, inv}}; expect(skcms_AreApproximateInverses(&hlg_curve, &inv)); expect(skcms_AreApproximateInverses(&inv_curve, &hlg)); } int main(int argc, char** argv) { bool regenTestData = false; for (int i = 1; i < argc; ++i) { if (0 == strcmp(argv[i], "-t")) { regenTestData = true; } } test_ICCProfile(); test_FormatConversions(); test_FormatConversions_565(); test_FormatConversions_101010(); test_FormatConversions_16161616LE(); test_FormatConversions_161616LE(); test_FormatConversions_16161616BE(); test_FormatConversions_161616BE(); test_FormatConversions_half(); test_FormatConversions_half_norm(); test_FormatConversions_float(); test_ApproximateCurve_clamped(); test_Matrix3x3_invert(); test_SimpleRoundTrip(); test_FloatRoundTrips(); test_ByteToLinearFloat(); test_MakeUsableAsDestination(); test_MakeUsableAsDestinationAdobe(); test_AdaptToD50(); test_PrimariesToXYZ(); test_Programmatic_sRGB(); test_ExactlyEqual(); test_AliasedTransforms(); test_Palette8(); test_TF_invert(); test_Clamp(); test_Premul(); test_PQ(); test_HLG(); test_PQ_invert(); test_HLG_invert(); // Temporarily disable some tests while getting FP16 compute working. if (!kFP16) { test_Parse(regenTestData); test_sRGB_AllBytes(); test_TRC_Table16(); } #if 0 test_CLUT(); #endif return 0; }